Modeling Streamflow and Sediment Loads with a Photogrammetrically Derived UAS Digital Terrain Model: Empirical Evaluation from a Fluvial Aggregate Excavation Operation

نویسندگان

چکیده

Soil erosion monitoring is a pivotal exercise at macro through micro landscape levels, which directly informs environmental management diverse spatial and temporal scales. The of soil can be an arduous task when completed ground-based surveys there are uncertainties associated with the use large-scale medium resolution image-based digital elevation models for estimating rates. LiDAR derived have proven effective in modeling erosion, but such data proves costly to obtain, process, analyze. proliferation images other geospatial datasets generated by unmanned aerial systems (UAS) increasingly able reveal additional nuances that traditional were not obtain due former’s higher resolution. This study evaluated efficacy UAS terrain model (DTM) estimate surface flow sediment loading fluvial aggregate excavation operation Waukesha County, Wisconsin. A nested scale distributed hydrologic was constructed point cloud DTM. To evaluate effectiveness DTM, DTM used comparison consonance several statistical measures efficiency. Results demonstrate estimation across space absence LiDAR-based

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

designing and validating a textbook evaluation questionnaire for reading comprehension ii and exploring its relationship with achievement

در هر برنامه آموزشی، مهم ترین فاکتور موثر بر موفقیت دانش آموزان کتاب درسی است (مک دونو و شاو 2003). در حقیقت ، کتاب قلب آموزش زبان انگلیسی است( شلدن 1988). به دلیل اهمیت والای کتاب به عنوان عنصر ضروری کلاس های آموزش زبان ، کتب باید به دقت ارزیابی و انتخاب شده تا از هرگونه تاثیر منفی بر دانش آموزان جلوگیری شود( لیتز). این تحقیق با طراحی پرسش نامه ارزیابی کتاب که فرصت ارزیابی معتبر را به اساتید د...

15 صفحه اول

Presenting a Morphological Based Approach for Filtering The Point Cloud to Extract the Digital Terrain Model

The Digital terrain model is an important geospatial product used as the basis of many practical projects related to geospatial information. Nowadays, a dense point cloud can be generated using the LiDAR data. Actually, the acquired point cloud of the LiDAR, presents a digital surface model that contains ground and non-ground objects. The purpose of this paper is to present a new approach of ex...

متن کامل

Digital Terrain Modeling in a Gis Environment

Digital terrain models (DTMs) in recent times have become an integral part of National Spatial Data Infrastructure (NSDI) of many countries world-wide due to their invaluable importance. DTMs play a major role in hydrologic modeling, sediment transport, soil erosion estimation, drainage basin morphology, vegetation, and ecology. DTM generation however has a setback of high cost of primary data ...

متن کامل

Digital terrain modeling with the Chebyshev polynomials

Mathematical problems of digital terrain analysis include interpolation of digital elevation models (DEMs), DEM generalization and denoising, and computation of morphometric variables by calculation of partial derivatives of elevation. Traditionally, these procedures are based on numerical treatments of two-variable discrete functions of elevation. We developed a spectral analytical method and ...

متن کامل

Digital Terrain Models Derived from SRTM Data and Kriging

The objective of this work is to define procedures to improve spatial resolution of SRTM data and to evaluate their applicability in the Serra Negra region, in the district of Patrocínio, state of Minas Gerais in Brazil. The region's structure is a result of past tectonic processes that have arched it into a dome shape. Besides the already existing agriculture exploitation, Serra Negra also has...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Drones

سال: 2021

ISSN: ['2504-446X']

DOI: https://doi.org/10.3390/drones5010020